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Grid-shells are lightweight structures used to cover long spans with few load-bearing material, as they
excel for lightness, elegance and transparency. In this paper we analyze the stability of hex-dominant
free-form grid-shells, generated with the Statics Aware Voronoi Remeshing scheme introduced in
Pietroni et al. (2015). This is a novel hex-dominant, organic-like and non uniform remeshing pattern that
manages to take into account the statics of the underlying surface. We show how this pattern is partic-
ularly suitable for free-form grid-shells, providing good performance in terms of both aesthetics and
structural behavior. To reach this goal, we select a set of four contemporary architectural surfaces and
we establish a systematic comparative analysis between Statics Aware Voronoi Grid-Shells and equiva-
lent state of the art triangular and quadrilateral grid-shells. For each dataset and for each grid-shell topol-
ogy, imperfection sensitivity analyses are carried out and the worst response diagrams compared. It turns
out that, in spite of the intrinsic weakness of the hexagonal topology, free-form Statics Aware Voronoi
Grid-Shells are much more effective than their state-of-the-art quadrilateral counterparts.

� 2016 Published by Elsevier Ltd.
1. Grid-shells: topology and stability

Grid-shells, also called lattice shells or reticulated shells, belong
to the category of lightweight structures. The shape of these struc-
tures is optimized to support its own weight, its geometry being
modified to provide additional stiffness to the overall structure.

Unfortunately, they are as efficient as exposed to risky buckling
phenomena. In fact, in terms of structural behavior grid-shells are
akin to shells but, at the same time, they are lighter and more flex-
ible, hence even harder to analyze.

Shells typically suffer from modes interaction (i.e. some of the
first linear buckling factors are coincident or have little separation)
and imperfection sensitivity (i.e. a slight perturbation of their cur-
vature may produce an unexpected deterioration of their static
behavior). Both these phenomena are extremely detrimental and
usually lead to a huge abatement of the theoretical linear buckling
load of the perfect shell [2,3].

The same phenomena are usually less pronounced for grid-
shells, although still present and indeed dangerous [4]. This is
because the collapse load is more likely to be determined by limit
point rather than by bifurcation of equilibrium.
In particular the grid-shell topology (together with the surface
curvature) determines the ratio between extensional and inexten-
sional internal strain energy, and thus the failure mode. For exam-
ple Section 6.1 shows how usually an unstable symmetric
bifurcation point appears in conjunction with triangular topology
and quasi-funicular underlying surface with regular boundary,
whereas limit points are usually associated with higher order
topologies.

Analytical relationships are available for the calculation of the
linear buckling load for shells of some shapes and restraint condi-
tions [5], together with experimental knockdown factors for abat-
ing the linear unsafe values [6], as a result of the efforts of
theoretical and industrial research carried out since the end of
the XIX century. Unfortunately, no akin results are available for
grid-shells.

Some attempts were done to evaluate the equivalent membrane
stiffness and thickness of planar grids, in order to estimate the
buckling load of grid-shells by using the available relationships
for continuous shells [7,8]. Although overestimating the real buck-
ling load and totally disregarding imperfections and material non-
linearity [9,4], the equivalent continuum method is very useful at
least in the preliminary phase of the assessment process. Unfortu-
nately, analytical solutions are available for a finite set of contin-
uum shells, thus limiting its application. As a consequence, fully
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non-linear numerical analyses are the standard tool for the assess-
ment of the stability of grid-shells.

From a geometrical point of view, grid-shells can be considered
as the discretization of continuous shells: the continuous shape is
tessellated by a set of connected piecewise linear modules com-
posing a manifold mesh. It is evident that both curvature and
meshing influence the statics of the structure, but while the effect
of curvature can be somehow envisaged with the theory of shells
[5], the outcome of meshing is much more difficult to predict
and additionally few related studies are available [10, p. 239–244].

In summary, the behavior of a grid-shell is utterly affected by
the Gaussian curvature of its underlying surface, the grid topology,
the grid spacing, the beam cross section, the joint stiffness and the
(potential) stiffening method [11,4].

Up to now, many examples of glass covered grid-shells have
been built, the vast majority of which being designed with triangu-
lar and quadrilateral grid topologies [12–14]. Triangular grid-shells
are unanimously credited as the most statically efficient structures
as they rely on extensional deformation only, whereas quadrilat-
eral grid-shells provide a better trade-off between statics
efficiency, transparency and manufacturing cost. In fact, quadrilat-
erals achieve high transparency at equal weight, as their area/
perimeter ratio is higher than that provided by triangles. Addition-
ally, planar panels can be easily obtained that, by virtue of their
almost right angles, are easier and cheaper to produce than trian-
gular panels [15,16]. Unfortunately, quadrilateral and polygonal
patterns generally undergo inextensional deformation (i.e. that
involves beams bending), that makes them less efficient than their
triangular competitors. As a consequence, most frequently the
effective use of the quadrilateral topology required the adoption
of special stiffening methods (e.g. bracing cables) [17], whereas
higher order topologies such as the hexagonal are yet highly mis-
trusted by structural engineers. This attitude is not totally fair
because while hexagonal grids display an isotropic equivalent
mechanical behavior, quadrilateral grids are orthotropic and it is
demonstrated that their efficiency greatly varies with the loading
direction, becoming even much worse than that of hexagons in
the most unfavorable case [18]. This in turn indicates that a grid-
shell with an optimized Voronoi-like topology (i.e. hex-
dominant) might display a very satisfying structural behavior.

In this paper we focus on pinning down the structural behavior
of Statics Aware Voronoi Grid Shells introduced in [1], that are
actually polygonal hex-dominant grid-shell structures, i.e. com-
posed of mostly hexagonal faces, including a few generic polygonal
faces, usually heptagons, pentagons and quads. From a purely geo-
metric viewpoint, this kind of structures turns out to be extraordi-
narily adaptive and suitable for free form architecture, definitely
muchmore than purely hexagonal structures [19]. In the following,
we demonstrate how this pattern can be successfully used to tes-
sellate highly free form surfaces providing static performances that
are considerably better than current practice quadrilateral remesh-
ing schemes, while for quite regular geometries the performances
are comparable. This also demonstrates how the ‘statics awareness’
introduced in [1] can be adopted to overcome the intrinsic struc-
tural weakness of polygonal topologies.

For the sake of brevity in the proposed experiments we consid-
ered no stiffening method (e.g. bracing cables). As a consequence
all the beams’ joints have been modeled as rigid (see Section 5.1
for more details).
2. Stability checks for grid-shells

Grid-shells are compressive structures and consequently they
can display several types of stability failure [4,20]:
1. member buckling: the classic Euler beam buckling under con-
centric axial load;

2. node instability: a set of beams fails locally due to the snap
through of a node;

3. line instability: all nodes of a ring in a dome or a generatrix of a
barrel vault buckle simultaneously (less determinant for free-
form shapes);

4. global instability: the whole structure undergoes sudden long-
wave displacements.

Usually member instability is decisive for high grid spacing val-
ues (see Section 5.2 for a coherent definition of grid-spacing),
whereas global instability and line instability are more likely to
appear in conjunction with dense networks [4]. However, instabil-
ities of type 1, 2 and 3 cannot be observed by using simple cells,
simplified static schemes or the equivalent continuum method.
Therefore, in the general case, the assessment of the load bearing
capacity of a grid-shell relies on performing numerical non-linear
buckling analyses: the so called ‘direct’ method. In particular, the
Finite Element Analysis (FEM) proves to be very effective as it
allows to:

� analyze any shape, also free-form shapes;
� point out buckling of all types;
� take into account the effect of imperfections;
� observe the softening behavior (geometrical non-linearity);
� introduce material non-linearity.

Therefore we performed systematic geometrically non-linear
analyses with a commercial FEM software [21]. Details are given
in Section 5.1. In particular, we chose not to consider material
non-linearity because of the higher computational time needed
and the large number of analyses performed. Indeed it is likely that
the failure mode of grid-shells, especially if free-form, would be
affected by yielding of the beams material (as is the case for the
British Museum Great Court roof, for example). But the purpose
of this study is not that of assessing the real buckling load of a
grid-shell, but rather only that of estimating the buckling strength
of the Statics Aware Voronoi Grid-Shells in comparison with their
state-of-the-art competitors. For this reason, we have deemed geo-
metrically non-linear analyses to be accurate enough for our aim.
3. Imperfection sensitivity analysis

It is well-known that the solution of the generalized eigenvalue
problem:

detðKÞ ¼ detðKe þ kKrÞ ¼ 0 ð1Þ

where K is the initial global stiffness matrix, Ke is the initial global
elastic stiffness matrix, Kr is the global geometric stiffness matrix
and k is the load factor that amplifies the external loads, provides
an overestimate of the real buckling load. This is especially the case
for shells and grid-shells endowed with a high level of symmetry,
where imperfection sensitivity and modes buckling interaction
may even halve the theoretical buckling load [3]. This happens
because these kind of structures are characterized by a high mem-
brane to bending strain energy ratio, and this in turn makes them
very sensitive to imperfections [22]. The process of evaluating the
effects of imperfections on the buckling strength of a structure is
known as imperfection sensitivity analysis, and it is essential in
assessing the safety of efficient structures.

Koiter [2] elaborated the ‘initial post-buckling theory’, which
assumes that it is possible to evaluate the behavior of the imperfect
structure by knowing the behavior of the perfect one. It applies to
structures showing bifurcation of equilibrium and lays its foundations
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on the asymptotical approximation of the post-buckling path.
Unfortunately, it is limited to almost linear fundamental paths only
as well as imperfections of small amplitude.

A more recent trend is the ‘mimimum perturbation energy’ con-
cept, which identifies snap-through phenomena towards sec-
ondary equilibrium paths by perturbing the system [23,24].

Nevertheless, the most commonly adopted method for deter-
mining the effect of imperfections is that of numerically analyzing
the imperfect model itself, which is called under the name of ‘di-
rect approach’. This in turn raises the question of how to compute
the ‘worst imperfection’, i.e. that imperfection that yields the lower
buckling factor. It is worth noticing that the problem of finding the
worst imperfection shape within a given amplitude limit is also
coupled in the variables shape and amplitude. This search is still
an open problem and some even think it does not have a unique
solution [25]. Indeed this approach has the advantage that complex
searches for the non-linear post-critical path are avoided, as the
introduction of the imperfections converts bifurcation points into
limit points. On the other hand, it is definitely computationally
expensive as it requires to carry out a series of fully non-linear
analyses on a (possibly infinite) set of models adulterated with dif-
ferent imperfections. The computational cost is sometimes dis-
couraging, especially for everyday design. As a consequence,
several variations to the general procedure have been proposed.

Deml and Wunderlich [26] propose to describe imperfections as
additional nodal degrees of freedom and to solve for both the buck-
ling load and the corresponding ‘worst’ imperfection shape by
solving an extended system of nonlinear equations.

After the studies of Ho [27] it was known that the worst imper-
fection shape is to be sought after within the convex linear combi-
nations of the linear eigenmodes (i.e. the eigenvectors ui associated
to the solutions ki of Eq. (1), with uT

i uj ¼ dij). Subsequently it was
also observed that in certain cases, especially when the softening
behavior is much pronounced in the pre-buckling phase, the worst
imperfection shape must also take into account the non-linear
eigenmodes (i.e. the eigenvectors ui associated to the solutions ki
of Eq. (1), with K being evaluated just before the bifurcation point)
[28].

A modern approach of absorbing this knowledge is that of set-
ting up a non-linear optimization problem in which the solution
is sought within convex linear combinations of linear and non-
linear eigenmodes, subjected to user-defined imperfection ampli-
tude constraints, by minimizing the buckling load [29]. As
expected, it is found out that lower buckling loads are obtained
by considering also non-linear buckling modes and that the worst
imperfection shape is usually composed of several eigenmodes.
Additionally, it is noticed that the first non-linear eigenmode is a
very good approximation of the worst imperfection shape. Never-
theless, it is also common knowledge that the first linear eigen-
mode represents a satisfactory approximation as well [30],
although for some structures higher linear eigenmodes might
erode the load bearing capacity even more [31].

Kristanic and Korelc [32] propose instead a linear optimization
problem, by carefully choosing linear constraints on both the shape
and the amplitude of the imperfections. They also include defor-
mation shapes (i.e. the displacement fields of the structure due
to relevant load cases) among the base shapes for the generation
of the convex linear combinations.

However, other studies showed that the worst imperfection
form depends on the specific combination of the structure’s geom-
etry and loading. Additionally dimples and local imperfections in
general, that are more relevant to production and may also repre-
sent the occurrence of local instabilities along the loading path,
might also cater for the maximum reduction in load bearing capac-
ity [33,34]. Therefore, eigenmodes combinations as well as all
long-wave imperfections may overestimate the buckling load.
Additionally, it is worth noting that some authors include also sev-
eral post-buckling deformed shapes among the competitors for the
worst imperfection shape [33,35].

In the light of these results the concept of ‘quasi-collapse-affine
imperfection’ has emerged, together with the awareness that the
worst imperfection shape cannot be pinpointed [25]. Schneider
finds that the worst imperfection pattern does not exist for shells
because it depends on the imperfection amplitude. Additionally,
it cannot be spotted as it relies heavily on clustering of instability
loads, crossing of secondary equilibrium paths in the post-buckling
range and material non-linearity. Therefore he introduces the con-
cept of ‘quasi-collapse-affine imperfections’: displacement fields
extracted from the initial stage of the buckling process, obtained
by conveniently restricting the space of the shape functions. These
imperfections turn out to be more unfavorable than eigenmodes,
especially when the instability is caused also by material non-
linearity. Actually they initiate the buckling process (they ‘stimu-
late’ it) thus allowing to approach the most unfavorable imperfec-
tion pattern [35].

Most of the described contributions are specific to shells,
whereas few references specific to grid-shells are available.
Bulenda and Knippers [20] propose to adopt as imperfection
shapes the non-linear eigenmodes and the displacement shapes
of the grid-shell under relevant load cases.

We use GSA as a FE-program [21], a commercial software which
does not allow the user to check and manipulate the stiffness
matrix. Thus we can neither obtain non-linear eigenmodes nor
restrict the space of the shape functions in order to compute ‘vir-
tual’ initial buckling shapes (as proposed by Schneider [35]). How-
ever, our study is a parametric analysis on the imperfection
sensitivity of grid-shells with different topology (i.e., triangular,
quadrilateral and hex-dominant), and not a thorough assessment
of the safety of real projects. All this being said, we content our-
selves with ‘stimulating’ the buckling process as proposed by Sch-
neider [25,35], by adopting the following imperfections shapes
(see Fig. 2 for an example):

1. the displacement shape obtained by linear static analysis,
addressed with the acronym LS in the following;

2. the initial buckling shape obtained by geometrically non-linear
analysis (i.e. the ‘real quasi-collapse-affine’ imperfection
according to Schneider [25,35]), addressed with the acronym
NLS in the following;

3. the first linear eigenmode and convex linear combinations of
the first ten linear eigenmodes, addressed with the acronym
LB in the following. No optimization procedure is established:
the generic i-th buckling mode is only included when a visual
resemblance is noticed with the non-linear initial buckling
shape of the grid-shell (i.e. NLS).

It is once again worth noticing that, as this is a comparative
analysis and not a real project, only the dead load case has been
considered. No asymmetric load cases have been addressed, nei-
ther in the buckling analyses nor in the definition of the imperfec-
tion shapes.

For each dataset (see Table 1), for each topology and for each
imperfection shape, we have created a range of imperfect models
by varying both the norm of the imperfection and its sign.

The norm is Euclidean jjejj2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

iðe2ix þ e2iy þ e2izÞ
q� �

and it was

sampled at regulars intervals �½25020015010050250� mm. Every
time the imperfections shapes have been scaled according to the
selected maximum norm and added to the perfect geometry.
We have also taken into account the sign of the imperfections, as
it may significantly influence the buckling behavior of the grid-
shell.



Fig. 1. All datasets. From left to right respectively: Neumünster Abbey glass roof, British Museum great court glass roof, Aquadom and Lilium Tower architectural free form
shapes. The black bullet is the state parameter adopted in the geometrically non-linear analyses.
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Fig. 2. Magnified deformed shapes for the hex-dominant remeshing of the Neumünster dataset, side and front views. From top to bottom respectively: ORIGINAL, LS, NLS, 1st
LB eigenmode, 2nd LB eigenmode and 3rd LB eigenmode.

Table 1
Statistics on datasets. When a reference is given the remeshing comes from that source, otherwise it is a height field isotropic remeshing sðx; yÞ.

Dataset Model Vertices’ Vertices Faces Edges Beams’ Total
valence section (mm) length (m)

Neumünster Abbey Triangular [39] 6 220 380 541 CS / 60 966.7
Quadrilateral 4 508 464 883 CS / 60 932.7
Voronoi 3 1076 553 1522 CS / 60 956.9

British Museum Triangular [40] 6 1746 3312 4878 CHS 120 � 30 10267.4
Quadrilateral 4 4693 4452 8723 CHS 120 � 30 10184.8
Voronoi 3 10,221 5784 14,829 CHS 120 � 30 10316.6

Aquadom Quadrilateral [41] 4 1078 1001 1936 CHS 100 � 20 3672.1
Voronoi 3 2382 1189 3400 CHS 100 � 20 3662.3

Lilium Tower Quadrilateral [41] 4 665 636 1244 CHS 100 � 20 2139.9
Voronoi 3 1432 717 2060 CHS 100 � 20 2121.1
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In so doing, we ended up with a total of 13 imperfect models for
each imperfection shape, for each topology and for each dataset,
for a total of more than 400 models (see second column of Table 1).
Each model has then been analyzed with the GSA FE-program [21],
by carrying out geometrically non-linear buckling analyses (see
Section 2 for reasons about neglecting material non-linearity and
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Fig. 3. The different steps composing the pipeline of [1]: the components of the stress tensor inducing the anisotropic metric (1); the distribution of seeds and their distance
field (2); the corresponding ACVT (3); the final optimized tessellation (4).
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Section 5.1 for details about modeling and load cases). Imperfec-
tion sensitivity diagrams are shown in Fig. 6, whereas relevant
load–deflection diagrams are displayed in Fig. 7.
4. Statics Aware Voronoi Remeshing

Here we briefly report the method we use to design the Statics
Aware Voronoi Grid-Shells. Our method is based on Anisotropic
Centroidal Voronoi Tessellations (ACVT) [36] and it is driven by the
statics of the input surface, aiming at improving the strength of
the grid-shell as well as its aesthetics.

Voronoi diagrams appear in nature in many forms. In several
cases, such as in the porous structure of animal bones, Voronoi-
like structures optimize strength while keeping a light weight.
We follow a similar approach to design hex-dominant grid-shells,
by concentrating more cells of smaller size in zones subject to
higher stress, while aligning the elements of our grid to the maxi-
mum stress direction. The pipeline of the method is summarized in
Fig. 3 and briefly discussed below. The reader is referred to [1] for
further details.

Given an initial surface R we first perform a linear static analy-
sis of the continuous shell under dead load (although in theory
every load condition can be adopted), thus obtaining a stress ten-
sor for each point p 2 R. As a thin shell can be considered in a plane
stress condition, the resulting stress tensor is two-dimensional.
Therefore we express it with respect to the local principal direc-
tions and we represent it as a pair of mutually orthogonal line
fields1 WðpÞ ¼ ð~uðpÞ;~vðpÞÞ, where ~u and ~v define the maximum and
minimum principal stresses at each point of the surface, respec-
tively. Since ~u and ~v are orthogonal, we decouple the scalar and
directional information and represent W as a triple
ð~unðpÞ;dðpÞ; aðpÞÞ, where ~un is a unit-length vector parallel to
~u; d ¼ j~uj is the maximum stress intensity (henceforth called density),
and a ¼ j~uj=j~vj is the anisotropy (see Fig. 3.1). Tensor W induces an
anisotropic metric gW ¼ diagð 1

d2
; a

2

d2
Þ on surface R, where the matrix

is expressed with respect to the principal reference system at p.
Next we compute a hex-dominant tessellation covering R,

whose faces have a uniform distribution with respect to metric
gW. Roughly speaking, this means that faces will be more dense
where the maximum stress is higher and they will be elongated
along the direction of maximum stress proportionally to
anisotropy.
1 A line field is a vector field modulo its orientation: only the directions and sizes of
~u and ~v are relevant to W, not their orientations.
In order to do so, we sample a set of seeds on the surface [37],
and then we relax their positions so that the distribution of seeds
becomes uniform with respect to metric gW. Relaxation consists of
computing the Voronoi diagram of the seeds under metric gW and
iteratively moving each seed to the centroid of its Voronoi cell [38],
until convergence. Note that, since gW has variable density and is
anisotropic, the distribution of seeds will not be uniform with
respect to the Euclidean metric: Fig. 3.2 depicts the distribution
of seeds (red2 dots) together with the corresponding field that
encodes distance of points on the surface from the seeds; Fig. 3.3
depicts the corresponding ACVT, which assembles the (anisotropic)
Voronoi cells of all seeds and is easily computed from the distance
field.

Finally, we apply geometric optimization to improve the local
shape of the faces of the hex-dominant mesh. Roughly speaking,
we deform each face to its closest regular polygon under metric
gW and we globally optimize the mesh by stitching adjacent poly-
gons. The result of optimization is depicted in Fig. 3.4.
5. Experimental setup

We have tested our method on several input surfaces. Fig. 1
shows the rendered views of the hex-dominant remeshing of these
surfaces (i.e. the Statics Aware Voronoi Grid-Shells), whereas Fig. 4
compares the top views of the various remeshings of each input
surface. A summary of the datasets is presented in Table 1:

1. Neumünster Abbey is the glass roof of the courtyard of the
Neumünster Abbey in Luxembourg, designed by RFR-Paris
[39] and built in 2003.

2. British Museum is the great court glass roof in the British
Museum: geometry rationalization by Prof. Chris J. K. Williams
[40], structural design by Buro Happold and construction com-
pleted in 2000 by Waagner Biro.

3. Aquadom and Lilium Tower are architectural free form shapes;
the latter is the top of the Lilium Tower skyscraper designed
by Zaha Hadid architects. The quadrilateral remeshings for
these datasets come from the statics optimization procedure
of [41].

Neumünster and British Museum datasets represent lightweight,
quite ordinary surface geometries and very low height-to-span
ratio grid-shells, whereas Aquadom and Lilium Tower embody
2 For interpretation of color in Figs. 3 and 8, the reader is referred to the web
ersion of this article.
v
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Fig. 4. Top views of all remeshings utilized in our comparative analysis.
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architectural free form skins as well as high height-to-span ratio
grid-shells.

5.1. Restraints, load conditions, numerical modeling

Since this is a comparative analysis and not a specific study on
the topic of stability of grid-shells, some simplifications have been
done:

1. All models have pin joints all over the boundary. This is a strong
assumption as the boundary support can have a tremendous
influence over the structure’s behavior.
The theory of bending of surfaces in the large proved that oval-
oids (i.e. closed convex surfaces with positive Gaussian curva-
ture everywhere) are rigid: i.e. they do not admit any
infinitesimal bending except from motions [42]. Cohn-Vossen
then proved that every ovaloid becomes non-rigid if any portion
of it is removed [43–45]: i.e. it can undergo no more extensional
deformation only but also inextensional deformation (i.e. bend-
ing).
A shell, those with synclastic surface at least, can be regarded as
a broken ovaloid whereas its restraints can be considered as
devices aimed at restoring the surface continuity. It is evident
that the higher the degree of restraint the more rigid the shell
will be. Nevertheless, no clear relationship is available in litera-
ture relating the stiffness of a shell to its degree of restraint.
Things may become even trickier for grid-shells, where vari-
ables like grid topology, grid-spacing and grid-orientation come
into play. It is not a case that often the grid generation step
takes the cue from both the boundary shape and the restraint
condition. Just to cite a relevant example, the geometry of the
British Museum triangular grid-shell has been generated with
respect to a given specific support condition: i.e. sliding bear-
ings together with tension beams along the edges, resisting
the thust at the corners.
All this being said, we understand that modeling a single type of
restraint case does not allow us to study the relationship
between grid-shell topology and restraint condition. We also
understand that assuming a single unvaried support condition
for all the models may put some of them at disadvantage, as
their geometry often arises from a specific set of supports.
Nevertheless we reckon that such a simplification is necessary
due to the great amount of variables already involved in our
analysis. Further studies will be required to address this topic.

2. The beams’ joints are modeled as rigid.
3. The beams’ size varies according to the specific model (as is

shown in Table 1) but it is constant within each model.
4. The beams’ cross section is always circular, either solid or hol-

low (see Table 1).
The shape of the cross section determines the ellipse of inertia
of the beam and hence its bending and torsional stiffnesses.
While a triangular mesh resists in-plane shear mostly by means
of extensional stiffness, the in-plane equilibrium of polygonal
grids relies heavily on both bending and torsional stiffnesses
of the mesh beams and hence in turn on the beams’ cross sec-
tion. This topic is thoroughly addressed and developed in [18],
where the equivalent membrane stiffness, bending stiffness
and thickness are analytically evaluated for the regular tilings
of the Euclidean plane (i.e. isotropic triangular, quadrilateral
and hexagonal grids).
For the sake of this analysis, we have stuck to circular cross sec-
tions only because they are reasonably representative of the
compact cross sections which are currently adopted in the
design and construction of grid-shells [12–14,20];

5. The load is always uniformly distributed (i.e. dead load). Three
load cases have been considered, respectively:
(a) G1 which is the dead load of the beams.
(b) G2 which is a uniform projected load of 0.75 kN/m2 of mag-

nitude, that stands for an hypothetical 25 mm thick glass
coverage.

(c) Qk which is a uniform projected load of 1.00 kN/m2 of mag-
nitude, that represents the snow action.
Then a serviceability load combination q¼ 1:0G1 þ1:0G2mþ
1:0Qk is used to carry out all the analyses.

6. Material non-linearity is neglected as the analyses already
involve many variables (see Section 2 for further explanations).

7. Each beam is modeled as a single finite element in order to
reduce the computational time, while keeping an acceptable
level of accuracy of the overall simulation. This simplification
prevents form pointing out single member buckling, but it is
still acceptable as member buckling is not the ordinary failure
mode for grid-shells.
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5.2. Statics comparison criteria

As we want to assess the structural performances of the Statics
Aware Voronoi Grid-Shells, we set up a comparative evaluation
with respect to other current practices (e.g. triangular and quadri-
lateral remeshing schemes).

As a basic criterion, equivalent grid-shells must be character-
ized by the same overall structural mass. Therefore in the following
the total mass of the structure is considered constant.

Also, in order to minimize the number of variables involved, the
shape of the members cross section must be kept constant for all
the topologies.

Nevertheless, as roughly stated by Gioncu [4] and Malek [11],
the structural performance of a grid-shell with fixed topology is
not only affected by the total weight of its members but also by
its grid-spacing. Giving a coherent definition of grid-spacing for
grid-shells with different geometry and topology is not a straight-
forward matter though.

As a first attempt, for grid-shells with isotropic and equi-areal
cells only, one could argue that the grid-spacing could be defined
as the bare edge length. It is evident though that different topolo-
gies are characterized by different area/perimeter ratios. This in
turn means that each topology requires a different total number
of cells as well as an overall different total length of members to
cover a given surface. Together with the aforementioned con-
straints of fixed overall structural mass and beams’ shape, this def-
inition of grid-spacing leads also to grid-shells with different
members size.

Similarly and more generically, for isotropic but non equi-areal
grid-shells (i.e. adaptive grids, whose cells area may vary locally),
the average edge length might be assumed as a measure of the
grid-spacing.

In order to check the consequences of such a definition of grid-
spacing we set up a bespoke numerical experiment, whose results
are shown in Fig. 5. A grid-spacing sensitivity analysis has been
carried out on a shallow spherical cap (60 m of span and 2.8 m of
height) remeshed with isotropic triangular, quadrilateral and
Voronoi-like topology, respectively. Solid circular beams with tai-
lored radia have been assigned to each remeshing in order to keep
the total mass always constant.
The grid-spacing represented on the x-axis of the diagram is
defined as the edge length for the isotropic triangular and quadri-
lateral topologies and as the average edge length for the Voronoi
topology.

By increasing the grid-spacing the overall members length
decreases, while the total mass is kept constant (see above).

Looking at the graph of Fig. 5 it is seen that the load factor varies
with the grid-spacing. More importantly, the very gap in terms of
load bearing capacity of grid-shells of different topology varies
with the grid-spacing. This in turn means that the choice of an
arbitrary grid-spacing (e.g. edge length) for our parametric studies
on the buckling strength of grid-shells with different topologies
would randomly affect the outcome of the experiments.

In light of these results we enforce the constancy of both total
mass and total remeshing length as a sound criterion for generat-
ing ‘statically equivalent’ grid-shells with different topologies.

Therefore, concluding, two grid-shells with different topology
share the same overall grid-spacing when they are characterized
by the some total remeshing length.
6. Results

We have compared the triangular, quadrilateral and Statics
Aware Voronoi-like patterns in terms of buckling strength, stiffness
and imperfection sensitivity. In particular, the following compar-
isons have been performed:

Imperfection sensitivity analysis: this analysis shows how the
buckling factor is affected by surface, grid-topology and imper-
fections shape, sign and amplitude (see Fig. 6 for results and
Section 3 for the setup of imperfect models).
‘Worst’ response diagram vs Grid-topology: for each dataset
(i.e. for each surface analyzed, see first column of Table 1) this
study compares the ‘worst’ response diagram (i.e. that corre-
sponding to the lowest load factor) of each grid-topology (see
Fig. 7 for results – the state parameter on x axis represents
the vertical deflection of the black bullet depicted in Fig. 1).
Response diagram vs Imperfection amplitude: this study out-
lines the variability of the response diagram with the signed
magnitude of the (worst) imperfection shape (see Fig. 8 for
results). For the sake of brevity, only the results concerning
the triangular and Statics Aware Voronoi Remeshings of the
Neumünster dataset are reported.

6.1. Comparative imperfection sensitivity analysis

Some theoretical background may help framing the results
obtained into a more generic context. To this aim, Fig. 6(e) and
(f) describe two kinds of critical points: an unstable symmetric
bifurcation point and a limit point [46], respectively. A structure
characterized by an unstable symmetric bifurcation point displays
a decreasing critical load for whatever imperfection is applied to its
geometry, no matter the type nor the magnitude. In jargon the
curve describing the variation of the structures’s critical load with
the imperfection shape and magnitude is called two-thirds power
law cusp (see [46] and Fig. 6(e)-right). On the other hand, a struc-
ture characterized by a limit point shows either an increase or a
decrease of its buckling load according to the sign of the imperfec-
tion applied to it. This behavior is well summarized by the mono-
thonic non-singular curve represented in Fig. 6(f)-right.

A quick inspection of these curves provides a satisfactory
insight in the stability of the structure at hand. In fact, the stability
behavior of most part of lightweight compressive structures such
as grid-shells can be usually related to one of those curves.
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Fig. 6. Imperfection sensitivity results. On the left column, from top to bottom: Neumünster Abbey courtyard glass roof, British Museum great court roof and schematic
representation of an unstable symmetric bifurcation point. On the right column, from top to bottom: Aquadom, Lilium Tower and schematic representation of a limit point. The
horizontal lines in (a)–(d) represent the first linear eigenvalue (i.e. buckling load) computed on the corresponding perfect model. Text within the graphs of (a)–(d) recalls the
‘worst’ geometric imperfection shape which generates the graphs (see Section 3 for terminology).
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Therefore we have graphed the outcome of our geometrically
non-linear analyses in k� e charts (i.e. critical load vs imperfec-
tion), in order to relate the various structural behaviors encoun-
tered to one of the aforementioned categories.
In accordance with Section 1, Fig. 6 shows that the triangular
topology is definitely the most effective as well as the most sensi-
tive to imperfections (see Figs. 6(a) and (c)), followed by our Statics
Aware Voronoi Remeshing (Figs. 6(c) and (b)), while the quadrilateral
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which generates the diagrams (see Section 3 for terminology). The state parameter referred to on the x axis is the vertical deflection of the black bullet depicted in Fig. 1.
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pattern turns out to be the less sensitive to imperfections. These
numerical results are in full accordance with the theoretical pre-
dictions of Tonelli [18], which where partially sketched in Sections
1 and 5.1.

Additionally, it is also evident that the regularity of the surface
plays a central role in the definition of the critical point. According
to Section 5, Neumünster and British Museum datasets represent
rather regular geometries (the former more regular than the latter,
see Figs. 1 and 4) whereas Aquadom and Lilium Tower Top are
free-form surfaces. Figs. 6(a) and (c) show that the Neumünster
and British Museum datasets display an unstable symmetric bifurca-
tion point [46] (compare the graphs with the two-thirds power law
cusp of Fig. 6(e)) roughly irrespective of the topology, although the
trend is much more noticeable for the triangular topology. Simi-
larly, Figs. 6(b) and (d) show that free-form surfaces such as Aqua-
dom and Lilium datasets display a limit point [46] (compare the
graphs with the monotonic non-singular curve of Fig. 6(f)), again
irrespective of the topology.

Another clear result provided by Fig. 6 is that the Statics Aware
Voronoi topology is just as efficient as the quadrilateral topology
when the underlying surface is quite regular (Neumünster and Bri-
tish Museum datasets, respectively Figs. 6(a) and (c)) but its effi-
ciency is even more than twice that of the quadrilateral pattern
when the underlying surface becomes irregular or totally free-
form (Aquadom and Lilium datasets, respectively Figs. 6(b) and
(d)).

Contrary to polar-symmetric domes (which exhibit a symmet-
ric graph both for negative and positive imperfections [20]),
none of the tested grid-shells show a symmetric behavior with
respect to the imperfection sign. Hence, the sign of imperfections
plays a crucial role in the structural behavior of grid-shells.
Besides, the singularity of the cusp representative of the unstable
symmetric bifurcation point of Figs. 6(a) and (c) does never cor-
respond to the perfect model. This in turn means that the perfect
grid-shell does not necessarily produce the highest buckling fac-
tor (it never does in our experiments). Therefore, in certain cir-
cumstances, a slight imperfection acts as a mild stiffening for
the grid-shell.

As a last remark, at least under dead load, the ‘worst’ imperfec-
tion shape is topology-dependent. It is seen that, among the
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imperfection shapes taken into account (see Section 3 for details
and terminology), the ‘worst’ is:

1. the first linear eigenmode LB for triangular topology (see Figs. 6
(a), (c));

2. either the first linear eigenmode LB or the linear static displace-
ment shape LS for the quadrilateral topology (see Figs. 6(b), (c)
and (a), (d), respectively);

3. the initial buckling shape of the perfect model NLS for the Stat-
ics Aware Voronoi-like topology (see Figs. 6(a), (b) and (d)).

According to Section 3, other convex combinations of linear
eigenmodes have been considered, but in no case any of these
has come out as the ‘worst’ imperfection shape. Unfortunately, in
agreement with Bulenda and Knippers [20], from our sensitivity
analysis no relationship between imperfection shape and ampli-
tude can be worked out in order to predict the ‘worst’ imperfection.

6.2. Comparative analysis of ‘worst’ response diagram vs grid-topology

Fig. 7 shows the ‘worst’ response diagrams for each grid-
topology (i.e. triangular, quadrilateral and Statics Aware Voronoi-
like) of each dataset (first column of Table 1). As usual, the term
‘worst’ response diagram means that it is associated with the
imperfect model which produces the lowest load factor.

As expected, triangular grid-shells achieve the highest load fac-
tor together with the lowest deformation (see Figs. 7(a) and (b)). As
already outlined in Sections 1 and 6.1, the triangular topology is
together the strongest as well as the most stiff, to such an extent
that it does not require any stiffening device.

On the contrary, almost all of the polygonal grid-shells (i.e.
quadrilateral and Statics Aware Voronoi-like) exhibit a very much
pronounced softening behavior prior to collapse. They fail when a
local maximum is reached along the primary equilibrium path, but
by then they have undergone extremely high (totally unsatisfac-
tory) forerunner displacements. Roughly speaking, they behave
like thick equivalent continuous shells made of a ‘squashy’ mate-
rial (i.e. with low equivalent Young modulus), according to the
analytical results of Tonelli [18]. It is worth noticing that this hap-
pens irrespective of the regularity of the underlying surface, i.e.
there is no distinction between regular datasets such as Neumün-
ster and British Museum and free-form datasets such as Aquadom
and Lilium (just compare the scale of the horizontal axis in Figs. 7
(a), (b) and (d)). These huge displacements point out the need for
the adoption of an appropriate stiffening method, aimed at reduc-
ing the flexibility.

Indeed, polygonal lattice shells exhibit a proper shell behavior
only when a suitable stabilizing system is introduced. Usually a
bracing cable system is used that caters for the shear forces to be
transferred by membrane action, whereas transverse diaphragms
might be added in order to provide for the double curvature to
be maintained [17].

Eventually, as already pointed out in Section 6.1, the Statics
Aware Voronoi Remeshing becomes very effective for architectural
free-form surfaces with a high height-to-span ratio (i.e. Aquadom
and Lilium Tower datasets). Indeed, it achieves buckling factors
which are on average twice as much as those yielded by equivalent
quadrilateral state-of-the-art grid-shells (see Figs. 7(c) and (d)).
This excellent result is due both to the innate adaptivity of the Vor-
onoi diagram and to the ‘statics awareness’ introduced by Pietroni
et al. [1].

6.3. Response diagram vs imperfection amplitude

Fig. 8 illustrates the variation of the response diagram with the
signed amplitude of the imperfection for the Neumünster dataset.
For the sake of brevity, only the triangular and Statics Aware
Voronoi-like topologies are reported with reference to their ‘worst’
imperfection shape (i.e. the LS and NLS imperfections, respectively
– see Fig. 6(a)).

It is evident that there is no straightforward correlation
between the imperfection amplitude and the shape of the response
diagram. It is also worth mentioning that GSA [21] works in load
control, which in turn means that it is not able to follow the
post-buckling behavior (e.g. also the potential bifurcation point
of the triangular pattern). A correlation is instead spotted between
the trend of the diagrams of Fig. 8 and those of Fig. 6(a). In partic-
ular, the cusp points of Fig. 6(a) correspond to a sensible snap-back
and an almost infinite slope in the corresponding response dia-
grams of Figs. 8(a) and (b), respectively. In so doing, the cusp points
of Fig. 6(a) can be regarded as ‘boundary lines’ (red lines in Fig. 8)
in the response diagram vs imperfection amplitude graphs of Fig. 8.



Fig. 9. The geometry of the Statics Aware Voronoi Grid-Shell mock-up.

Table 2
Statistics on the mock-up.

Beams Joints Faces Washers Screws

Number 697 231 465 227 243
Material Mild fir ABS PET Iron Iron
q (kg m�3) 400 1050 1400 7750 7750
Mtot (kg) 1.5 1.6 7.2 2.5 0.3

Mtot (kg) 13.1
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Eventually, the triangular topology displays a rather linear
behavior up to collapse (or up to the 80% of the collapse load at
least) on average. On the contrary, the Statics Aware Voronoi-like
topology exhibits a sensible softening behavior along the loading
process, that intensifies as the imperfection amplitude grows.

Unfortunately, there are no evident rules on how to state in
advance the load–deflection relation for a whatsoever imperfect
structure. Then the engineer has to undergo all the efforts of a thor-
ough imperfection sensitivity analysis, as the response diagram
shape affects the safety of the structure.

7. Statics-Aware Voronoi mock-up

A mock-up of Statics Aware Voronoi Grid-Shell has been built at
the Department D.E.S.T.e.C. of the University of Pisa, with overall
dimensions (2.4 � 2.4 � 0.7) m and composed of 465 joints, 697
beams and 231 panels (see Fig. 9 and Table 2 for statistics).

The joints were 3D printed, the timber beams manually cut and
the P.E.T. panels laser cut. All the geometry was digitally handled
by means of Rhinoceros [47], in particular using its plug-in Rhino-
Script forautomatingsomeprocedures.Duringtheassemblingphase
(lasted 17 days) temporary ‘scaffoldings’ were needed until the
structure was completed and could bear its own weight (see Fig. 9).

8. Conclusions

This paper tackles the problems of the assessment of the struc-
tural performance of a novel hex-dominant remeshing pattern for
free-from grid-shells: the Statics Aware Voronoi Remeshing scheme
introduced by Pietroni et al. [1].

The basic intuition for the generation of the geometry is to lay
out the beams network along the edges of an Anisotropic Cen-
troidal Voronoi tessellation of the surface, where the metric used
is not the Euclidean metric but that induced by the stress tensor
over the surface under dead load.

In order to assess their structural capabilities we have carried
out a systematic comparative analysis between them and equiva-
lent state-of-the-art competitors (i.e. grid-shells with triangular
and quadrilateral topology). To this aim, we have performed exten-
sive investigations through numerical geometrically non-linear
analyses. The results we have obtained show that, at least with
respect to the specific conditions addressed (i.e. dead loading, rigid
joints, pinned boundary, etc.), our free-form Statics Aware Voronoi
Grid-Shells are not only aesthetically pleasing but also statically
efficient. Obviously they cannot be as efficient as the triangular
grid-shells, but they turn out to be twice as effective as their equiv-
alent state-of-the-art quadrilateral competitors. Therefore they
may indeed represent a valid alternative for the design of modern
grid-shells, especially if the underlying surface is free-form. In par-
ticular we have observed that the bigger the irregularity of the
underlying surface, the better the structural performances of our
Statics Aware Voronoi Grid-Shells thanks to the statics awareness
supplied by the statically driven metric.

This indeed holds true when the Statics Aware Voronoi Grid-
Shells are subject to uniform load cases (e.g. gravity load). On the
other hand further research should be carried out in order to assess
their effectiveness under different load conditions. In particular
anti-metric load cases are envisaged to be extremely detrimental
because, as it stands, the Statics Aware Voronoi Remeshing algo-
rithm generates optimal grid-shells with respect to symmetric
loading only.

These situations are exactly those in which a prospective stiff-
ening device should kick in, bringing about much needed stiffness.
The analysis of such a complex and detailed device is out of the
scope of the present study and need to be addressed separately.
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Also, to this respect, the stiffness of the joints plays a very
important role on the overall behavior of the grid-shell. Generally
speaking a grid-shell with all pinned nodes is a mechanism
whereas the same grid-shell with rigid joints usually yields the
best performances. Nevertheless seldom rigid joints can be
achieved in practice and therefore a systematic study would be
required in order to assess the effect of the stiffness of the joints
over the grid-shell behavior. Again, the analysis of such a delicate
matter requires extensive research and as such is clearly out of
the scope of the present work.

A thorough imperfection sensitivity analysis has also been car-
ried out. We have found out that the ‘worst’ imperfection shape is
topology-dependent, i.e. it varies with the remeshing pattern even
if the underlying surface is kept constant. In particular, the initial
buckling shape proposed by Schneider [25,35] under the name of
‘quasi-collapse-affine’ imperfection seems to be the most unfavor-
able imperfection for the Statics Aware Voronoi Grid-Shells. Addi-
tionally, although less sensitive to imperfections than shells, the
reduction of the buckling load might be very high also for grid-
shells. Specifically, the stiffer they are the higher their collapse load
abatement is.

In particular, the failure load of imperfect triangular grid-shells
can be even a quarter of the thoretical value, Statics Aware Voronoi
Grid-Shells can have their buckling load halved whereas quadrilat-
eral grid-shells are usually the least sensitive with a maximum fall
of 35% (see Fig. 6). Again, these results hold true for grid-shells sub-
ject to uniform loading only and hence further research should be
carried out to extend them to different load conditions (e.g. anti-
metric loading).

From a geometrical and pragmatic standpoint, Statics Aware
Voronoi meshes have twice the number of vertices with respect
to statically equivalent quadrilateral meshes (see Section 5.2),
but at the same time all vertices have valence three (see Table 1),
thus they are competitive from the feasibility viewpoint too.

At this stage of development the Statics Aware Voronoi
Remeshing algorithm does not yield planar faces, thus it is not
directly applicable to the design of glass-covered grid-shells. Nev-
ertheless with further focused research we are confident that a face
single curvature constraint could be implemented. This in turn
would pave the way for the use of rigid cladding materials such
as cold-bent glass [48–50], GRP, GRC, etc. For further details about
planarity of the faces and geometric aspects, the reader is referred
to [1].
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